The 2023 MDPI Annual Report has
been released!
 
16 pages, 6942 KiB  
Article
The Effects of Calcium Nitrite on the Mechanical Properties and Microstructure of Early-Age Frozen Cement Paste
by Lijun Wan, Maopei Yu, Enze Wu and Yongqi Zhao
Materials 2024, 17(10), 2461; https://doi.org/10.3390/ma17102461 (registering DOI) - 20 May 2024
Abstract
The objective of this paper is to investigate the effect of calcium nitrite (CN) on improving the mechanical properties and microstructures of early-frozen cement paste. Cement pastes containing 1%, 1.5%, 2%, 2.5%, and 3% CN were prepared. One batch of samples was frozen [...] Read more.
The objective of this paper is to investigate the effect of calcium nitrite (CN) on improving the mechanical properties and microstructures of early-frozen cement paste. Cement pastes containing 1%, 1.5%, 2%, 2.5%, and 3% CN were prepared. One batch of samples was frozen at −6 °C for 7 days and then cured at 20 °C, and the other batch of samples was directly cured at 20 °C as a control. The compressive strength, ultrasonic pulse velocity, and resistivity of all specimens at different target ages were measured under these two curing conditions. The hydration products and microstructures of typical samples were observed using XRD and scanning SEM. The results showed that the addition of 1.5% CN could promote cement hydration and enhance slurry densification, thereby increasing the compressive strength, ultrasonic pulse velocity, and electrical resistivity of the slurry, and positively affecting the early freezing resistance of the slurry. However, when the CN dosage exceeded 1.5%, the internal structure of the slurry was loose and porous due to the generation of a large amount of nitrite–AFm, which negatively affects the properties of the cement paste. In addition, the effectiveness of CN is only limited to temperature environments above −6 °C. Concrete antifreeze suitable for lower temperatures still requires further research. Full article
Show Figures

Figure 1

19 pages, 2968 KiB  
Article
Teaching–Learning-Based Optimization Algorithm with Stochastic Crossover Self-Learning and Blended Learning Model and Its Application
by Yindi Ma, Yanhai Li and Longquan Yong
Mathematics 2024, 12(10), 1596; https://doi.org/10.3390/math12101596 (registering DOI) - 20 May 2024
Abstract
This paper presents a novel variant of the teaching–learning-based optimization algorithm, termed BLTLBO, which draws inspiration from the blended learning model, specifically designed to tackle high-dimensional multimodal complex optimization problems. Firstly, the perturbation conditions in the “teaching” and “learning” stages of the original [...] Read more.
This paper presents a novel variant of the teaching–learning-based optimization algorithm, termed BLTLBO, which draws inspiration from the blended learning model, specifically designed to tackle high-dimensional multimodal complex optimization problems. Firstly, the perturbation conditions in the “teaching” and “learning” stages of the original TLBO algorithm are interpreted geometrically, based on which the search capability of the TLBO is enhanced by adjusting the range of values of random numbers. Second, a strategic restructuring has been ingeniously implemented, dividing the algorithm into three distinct phases: pre-course self-study, classroom blended learning, and post-course consolidation; this structural reorganization and the random crossover strategy in the self-learning phase effectively enhance the global optimization capability of TLBO. To evaluate its performance, the BLTLBO algorithm was tested alongside seven distinguished variants of the TLBO algorithm on thirteen multimodal functions from the CEC2014 suite. Furthermore, two excellent high-dimensional optimization algorithms were added to the comparison algorithm and tested in high-dimensional mode on five scalable multimodal functions from the CEC2008 suite. The empirical results illustrate the BLTLBO algorithm’s superior efficacy in handling high-dimensional multimodal challenges. Finally, a high-dimensional portfolio optimization problem was successfully addressed using the BLTLBO algorithm, thereby validating the practicality and effectiveness of the proposed method. Full article
Show Figures

Figure 1

17 pages, 9970 KiB  
Article
Mining Multimodal Travel Mobilities with Big Ridership Data: Comparative Analysis of Subways and Taxis
by Hui Zhang, Yu Cui and Jianmin Jia
Sustainability 2024, 16(10), 4305; https://doi.org/10.3390/su16104305 (registering DOI) - 20 May 2024
Abstract
Understanding traveler mobility in cities is significant for urban planning and traffic management. However, most traditional studies have focused on travel mobility in a single traffic mode. Only limited studies have focused on the travel mobility associated with multimodal transportation. Subways are considered [...] Read more.
Understanding traveler mobility in cities is significant for urban planning and traffic management. However, most traditional studies have focused on travel mobility in a single traffic mode. Only limited studies have focused on the travel mobility associated with multimodal transportation. Subways are considered a green travel mode with large capacity, while taxis are an energy-consuming travel mode that provides a personalized service. Exploring the relationship between subway mobility and taxi mobility is conducive to building a sustainable multimodal transportation system, such as one with mobility as a service (MaaS). In this study, we propose a framework for comparatively analyzing the travel mobilities associated with subways and taxis. Firstly, we divided taxi trips into three groups: competitive, cooperative, and complementary. Voronoi diagrams based on subway stations were introduced to divide regions. An entropy index was adopted to measure the mix of taxi trips. Secondly, subway and taxi trip networks were constructed based on the divided regions. The framework was tested based on the automatic fare collection (AFC) data and global positioning system (GPS) data of a subway in Beijing, China. The results showed that the proportions of taxi competition, taxi cooperation, and taxi complements were 9.1%, 35.6%, and 55.3%, respectively. The entropy was large in the central city and small in the suburbs. Moreover, it was found that the subway trip network was connected more closely than the taxi network. However, the unbalanced condition of taxis is more serious than that of the subway. Full article
(This article belongs to the Special Issue Sustainable Transport Research and Railway Network Performance)
Show Figures

Figure 1

20 pages, 4545 KiB  
Article
Identification and Expression Profile of NCED Genes in Arachis hypogaea L. during Drought Stress
by Ao Chen, Jingyan Li, Heping Wang and Puyan Zhao
Int. J. Mol. Sci. 2024, 25(10), 5564; https://doi.org/10.3390/ijms25105564 (registering DOI) - 20 May 2024
Abstract
Peanut (Arachis hypogaea L.) is an important crop that provides essential proteins and oils for human and animal consumption. 9-cis-epoxycarotenoid dioxygenase (NCED) have been found can play a vital role in abscisic acid (ABA) biosynthesis and may be a response to drought [...] Read more.
Peanut (Arachis hypogaea L.) is an important crop that provides essential proteins and oils for human and animal consumption. 9-cis-epoxycarotenoid dioxygenase (NCED) have been found can play a vital role in abscisic acid (ABA) biosynthesis and may be a response to drought stress. Until now, in Arachis hypogaea, no information about the NCED gene family has been reported and the importance of NCED-related drought tolerance is unclear. In this study, eight NCED genes in Arachis hypogaea, referred to as AhNCEDs, are distributed across eight chromosomes, with duplication events in AhNCED1 and AhNCED2, AhNCED3 and AhNCED4, and AhNCED6 and AhNCED7. Comparative analysis revealed that NCED genes are highly conserved among plant species, including Pisum sativum, Phaseolus vulgaris, Glycine max, Arabidopsis thaliana, Gossypium hirsutum, and Oryza sativa. Further promoter analysis showed AhNCEDs have ABA-related and drought-inducible elements. The phenotyping of Arachis hypogaea cultivars NH5 and FH18 demonstrated that NH5 is drought-tolerant and FH18 is drought-sensitive. Transcriptome expression analysis revealed the differential regulation of AhNCEDs expression in both NH5 and FH18 cultivars under drought stress. Furthermore, compared to the Arachis hypogaea cultivar FH18, the NH5 exhibited a significant upregulation of AhNCED1/2 expression under drought. To sum up, this study provides an insight into the drought-related AhNCED genes, screened out the potential candidates to regulate drought tolerance and ABA biosynthesis in Arachis hypogaea. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

19 pages, 596 KiB  
Article
Age and Burnout: The Mediating Role of Emotion-Regulation Strategies
by Bianca Mendes and Isabel Miguel
Soc. Sci. 2024, 13(5), 274; https://doi.org/10.3390/socsci13050274 (registering DOI) - 20 May 2024
Abstract
In the context of an aging workforce, this study explores the interaction between age, burnout, and emotion-regulation strategies (ERS). Despite recognized challenges in managing age diversity and employee well-being, the direct impact of age on burnout and the mediating role of ERS remain [...] Read more.
In the context of an aging workforce, this study explores the interaction between age, burnout, and emotion-regulation strategies (ERS). Despite recognized challenges in managing age diversity and employee well-being, the direct impact of age on burnout and the mediating role of ERS remain unexplored. Analyzing data from 604 Portuguese workers (aged 18–65), this study utilizes a mediation model to investigate if age is directly related to the main problems that affect the workforce presently, focusing specifically on burnout and the role that emotion-regulation abilities (cognitive reappraisal and expressive suppression) have in controlling the burnout effects (measured by emotional exhaustion and disengagement). The findings indicate that age does not have a straightforward linear relationship with burnout or ERS choice. Although age alone does not significantly influence burnout outcomes, ERS markedly impacts these outcomes, suggesting that factors beyond age predominantly drive ERS selection and effectiveness in managing burnout. This study emphasizes the critical role of ERS in influencing burnout, suggesting the importance of equipping workers with effective emotion-regulation skills to mitigate burnout risks. Further research is warranted to disentangle the complex interrelations among age, burnout, and ERS in organizational contexts. Full article
Show Figures

Figure 1

18 pages, 7516 KiB  
Article
Design Method of Cam Steering Mechanism Based on Path Fitting
by Xiaofei Zheng, Hantao Zhao, Songhui Zhang, Dan Liu and Binrui Wang
Processes 2024, 12(5), 1037; https://doi.org/10.3390/pr12051037 (registering DOI) - 20 May 2024
Abstract
In order to improve the accuracy of a solar-powered punch card car’s movement on a designated route and reduce positional deviations during its operation, a solar-powered punch card car with a single cam as the steering guidance mechanism was designed. The car adopts [...] Read more.
In order to improve the accuracy of a solar-powered punch card car’s movement on a designated route and reduce positional deviations during its operation, a solar-powered punch card car with a single cam as the steering guidance mechanism was designed. The car adopts a three-wheel structure. The transmission mechanism, steering mechanism, driving mechanism, and regulating mechanism of the car were analyzed. The kinematics model of the car was established and the motion characteristics of the car were obtained. By analyzing the relationship between the steering angle of the car and the curvature radius of its travel route, the front wheel angle of the car at each position was calculated using MATLAB R2020a. This allowed us to establish the relationship between the front wheel angle and the displacement of the steering push rod, which was further converted into the theoretical contour line of the cam. Subsequently, the theoretical contour line of the cam was completed and envelope correction was performed. Finally, through mechanical analysis and experimental verification using a prototype, the results indicated that the single-cam steering guidance mechanism calculated using this fast path fitting method exhibited excellent mechanical performance and a smooth and accurate trajectory, and the traveling path of the theoretical cam contour curve was basically consistent with the actual trajectory route. Full article
(This article belongs to the Section Advanced Digital and Other Processes)
Show Figures

Figure 1

18 pages, 1267 KiB  
Article
Compilation of Dictionaries and Scientific and Technological Translations by Western Protestant Missionaries in China in the Nineteenth Century
by Jin Tao and Lixin Wan
Religions 2024, 15(5), 628; https://doi.org/10.3390/rel15050628 (registering DOI) - 20 May 2024
Abstract
The 19th century saw the important transformation of modern Western concepts into Chinese lexical resources. The missionaries were the initiators and important driving force for the translation of Western books into Chinese in modern China. They promoted ‘translating terms’ and ‘coining terms’ in [...] Read more.
The 19th century saw the important transformation of modern Western concepts into Chinese lexical resources. The missionaries were the initiators and important driving force for the translation of Western books into Chinese in modern China. They promoted ‘translating terms’ and ‘coining terms’ in their translations of Western books and the compilation of dictionaries with the cooperation of Chinese intellectuals. Their work provided a tangible ‘word’ carrier of ‘concepts’ for disseminating modern knowledge from the West to the East. Compiled by missionaries, the English–Chinese bilingual dictionaries introduced a brand-new concept of dictionary compilation and changed China’s history of having zidian (字典, character dictionaries) but no cidian (辞典, specialized dictionaries). In particular, John Fryer applied the translation method of creating new words or characters in the translation of chemical terminology. Members of the School and Textbook Series Committee, including John Fryer and Calvin Wilson Mateer, made great contributions to theories and strategies for translation, which keep inspiring Chinese–English translation of terminology and its theoretical construction. Full article
19 pages, 995 KiB  
Review
Deciphering the Effects of Different Types of Sunlight Radiation on Skin Function: A Review
by Sophia Letsiou, Elpida Koldiri, Apostolos Beloukas, Efstathios Rallis and Vasiliki Kefala
Cosmetics 2024, 11(3), 80; https://doi.org/10.3390/cosmetics11030080 (registering DOI) - 20 May 2024
Abstract
Sunlight radiation is a fundamental component of our daily lives. Specifically, blue light as well as UV light appear to play a role in the development of oxidative stress, DNA damage, photoaging, and pigmentation through the chromophores in skin tissues. However, several skin [...] Read more.
Sunlight radiation is a fundamental component of our daily lives. Specifically, blue light as well as UV light appear to play a role in the development of oxidative stress, DNA damage, photoaging, and pigmentation through the chromophores in skin tissues. However, several skin problems like psoriasis, eczema, and atopic dermatitis can be avoided with short-duration exposures to low-energy blue light radiation or UV radiation. In addition, exploring the effects of blue light as well as UV radiation on skin is quite essential for the development of minimally invasive antiaging strategies and for the design of innovative cosmetic formulations in modern aesthetics and cosmetology. Thus, in this review, we present the advantages as well as the disadvantages of light radiation, with a special focus on blue light and UV radiation activity on the human skin. We also discuss the molecular action of blue light and UV radiation on human skin. Other types of light radiation are included to holistically approach the effect of light on human skin. Full article
Show Figures

Figure 1

12 pages, 9112 KiB  
Article
Revealing the Superior Post-Necking Elongation in the Fine-Grained Ti-6Al-4V ELI at Cryogenic Temperature
by Quan Gao, Rengeng Li, Hao Wu, Kesong Miao, He Wu, Chenglu Liu and Xuewen Li
Metals 2024, 14(5), 600; https://doi.org/10.3390/met14050600 (registering DOI) - 20 May 2024
Abstract
The mechanical properties of a fine-grained (FG) Ti-6Al-4V extra-low interstitial (ELI) alloy were investigated by tensile tests at 298 K and 77 K. The experimental results indicated that, at 77 K, the alloy exhibits a small uniform elongation of 2.65%, but has a [...] Read more.
The mechanical properties of a fine-grained (FG) Ti-6Al-4V extra-low interstitial (ELI) alloy were investigated by tensile tests at 298 K and 77 K. The experimental results indicated that, at 77 K, the alloy exhibits a small uniform elongation of 2.65%, but has a fracture elongation of 19.2%, showing superior post-necking elongation. At 298 K, the alloy displays a single dislocation slipping, β→α″ phase transformation occurred, and 6.35% uniform elongation was obtained, whereas the coupling of dislocation slipping and twinning deformation behaviors dominated at 77 K. The limited uniform elongation is attributed to the absence of martensite phase transformation at 77 K, whereas the decent fracture elongation is ascribed to the resistance offered by twinning against plastic instability. Full article
Show Figures

Figure 1

18 pages, 457 KiB  
Article
Sovereign Green Bond Market: Drivers of Yields and Liquidity
by Kamila Tomczak
Int. J. Financial Stud. 2024, 12(2), 48; https://doi.org/10.3390/ijfs12020048 (registering DOI) - 20 May 2024
Abstract
The aim of this study is to analyse and assess the yields and liquidity of sovereign green bonds in selected countries and to compare the yields between sovereign green bonds and conventional bonds. Sovereign green bonds are issued by governments to finance environmental [...] Read more.
The aim of this study is to analyse and assess the yields and liquidity of sovereign green bonds in selected countries and to compare the yields between sovereign green bonds and conventional bonds. Sovereign green bonds are issued by governments to finance environmental and social projects and represent a relatively new and growing asset class. This study seeks to analyse the financial performance of sovereign green bonds by examining yields and liquidity metrics, such as bid–ask spreads. The findings of this research suggest that the yield to maturity (YTM) of sovereign green bonds is influenced by conventional bond return, while conventional sovereign bonds are affected by the financial market return. Furthermore, the results confirm that the liquidity of sovereign green bonds can be explained by bond maturity. Full article
(This article belongs to the Special Issue Green Bonds and Climate Change Mitigation)
Show Figures

Figure 1

16 pages, 9982 KiB  
Article
Integrating the Living Wall with Mechanical Ventilation to Improve Indoor Thermal Environment in the Transition Season
by Fudan Liu and Xi Meng
Sustainability 2024, 16(10), 4300; https://doi.org/10.3390/su16104300 (registering DOI) - 20 May 2024
Abstract
A living wall, when integrated with a mechanical ventilation system, can effectively improve the indoor thermal environment and reduce indoor CO2 concentration during the transition season. In this study, a control experiment was conducted to analyze the effect of a living wall [...] Read more.
A living wall, when integrated with a mechanical ventilation system, can effectively improve the indoor thermal environment and reduce indoor CO2 concentration during the transition season. In this study, a control experiment was conducted to analyze the effect of a living wall integrated with mechanical ventilation (LW-V) on indoor air quality. During the experiment, indoor air temperature, relative humidity, indoor air speed, and CO2 concentration were measured, while the skin temperature was monitored and subjective questionnaires were administered to 60 subjects. The results show that the indoor environment was effectively improved by employing the LW-V system, with the average indoor temperature decreasing by 1.45 °C, while relative humidity increased by 19.1%. Due to the plant photosynthesis, CO2 concentrations were reduced by 13.83 ppm. Meanwhile, the mean skin temperature was reduced by 0.18 °C and was closer to the neutral mean skin temperature. Questionnaire analysis reveals the LW-V system improved overall air freshness sensation and thermal comfort level by 1.09 and 0.53, respectively. The LW-V system improved the indoor thermal environment as well as air quality during the transition season significantly. Full article
Show Figures

Figure 1

19 pages, 2941 KiB  
Article
Using HawkEye Level-2 Satellite Data for Remote Sensing Tasks in the Presence of Dust Aerosol
by Anna Papkova, Darya Kalinskaya and Evgeny Shybanov
Atmosphere 2024, 15(5), 617; https://doi.org/10.3390/atmos15050617 (registering DOI) - 20 May 2024
Abstract
This paper is the first to examine the operation of the HawkEye satellite in the presence of dust aerosol. The study region is the Black Sea. Dust transport dates were identified using visual inspection of satellite imagery, back-kinematic HYSPLIT trajectory analysis, CALIPSO aerosol [...] Read more.
This paper is the first to examine the operation of the HawkEye satellite in the presence of dust aerosol. The study region is the Black Sea. Dust transport dates were identified using visual inspection of satellite imagery, back-kinematic HYSPLIT trajectory analysis, CALIPSO aerosol stratification and typing maps, and the global forecasting model SILAM. In a comparative analysis of in-situ and satellite measurements of the remote sensing reflectance, an error in the atmospheric correction of HawkEye measurements was found both for a clean atmosphere and in the presence of an absorbing aerosol. It is shown that, on average, the dependence of the atmospheric correction error on wavelength has the form of a power function of the form from λ−3 to λ−9. The largest errors are in the short-wavelength region of the spectrum (412–443 nm) for the dust and dusty marine aerosol domination dates. A comparative analysis of satellite and in situ measurements of the optical characteristics of the atmosphere, namely the AOD and the Ångström parameter, was carried out. It is shown that the aerosol model used by HawkEye underestimates the Angström parameter and, most likely, large errors and outliers in satellite measurements are associated with this. Full article
(This article belongs to the Special Issue Optical Characteristics of Aerosol Pollution)
Show Figures

Figure 1

20 pages, 6928 KiB  
Article
Hybrid Nanoparticles from Random Polyelectrolytes and Carbon Dots
by Sophia Theodoropoulou, Antiopi Vardaxi, Antonia Kagkoura, Nikos Tagmatarchis and Stergios Pispas
Materials 2024, 17(10), 2462; https://doi.org/10.3390/ma17102462 (registering DOI) - 20 May 2024
Abstract
The present study concerns the preparation of hybrid nanostructures composed of carbon dots (CDs) synthesized in our lab and a double-hydrophilic poly(2-dimethylaminoethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) (P(DMAEMA-co-OEGMA)) random copolymer through electrostatic interactions between the negatively charged CDs [...] Read more.
The present study concerns the preparation of hybrid nanostructures composed of carbon dots (CDs) synthesized in our lab and a double-hydrophilic poly(2-dimethylaminoethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) (P(DMAEMA-co-OEGMA)) random copolymer through electrostatic interactions between the negatively charged CDs and the positively charged DMAEMA segments of the copolymer. The synthesis of P(DMAEMA-co-OEGMA) copolymer was conducted through RAFT polymerization. Furthermore, the copolymer was converted into a strong cationic random polyelectrolyte through quaternization of the amine groups of DMAEMA segments with methyl iodide (CH3I), and it was subsequently utilized for the complexation with the carbon dots. The molecular, physicochemical, and photophysical characterization of the aqueous solution of the copolymers and their hybrid nanoparticles was conducted using dynamic and electrophoretic light scattering (DLS, ELS) and spectroscopic techniques, such as UV-Vis, fluorescence (FS), and FT-IR spectroscopy. In addition, studies of their aqueous solution using DLS and ELS showed their responsiveness to external stimuli (pH, temperature, ionic strength). Finally, the interaction of selected hybrid nanoparticles with iron (III) ions was confirmed through FS spectroscopy, demonstrating their potential application for heavy metal ions sensing. Full article
Show Figures

Figure 1

12 pages, 505 KiB  
Article
Case Study for Predicting Failures in Water Supply Networks Using Neural Networks
by Viviano de Sousa Medeiros, Moisés Dantas dos Santos and Alisson Vasconcelos Brito
Water 2024, 16(10), 1455; https://doi.org/10.3390/w16101455 (registering DOI) - 20 May 2024
Abstract
This study deals with the prediction of recurring failures in water supply networks, a complex and costly task, but essential for the effective maintenance of these vital infrastructures. Using historical failure data provided by Companhia de Água e Esgotos da Paraíba (CAGEPA), the [...] Read more.
This study deals with the prediction of recurring failures in water supply networks, a complex and costly task, but essential for the effective maintenance of these vital infrastructures. Using historical failure data provided by Companhia de Água e Esgotos da Paraíba (CAGEPA), the research focuses on predicting the time until the next failure at specific points in the network. The authors divided the failures into two categories: Occurrences of New Faults (ONFs) and Recurrences of Faults (RFs). To perform the predictions, they used predictive models based on machine learning, more specifically on MLP (Multi-Layer Perceptron) neural networks. The investigation unveiled that through the analysis of historical failure data and the consideration of variables including altitude, number of failures on the same street, and days between failures, it is possible to achieve an accuracy greater than 80% in predicting failures within a 90-day interval. This demonstrates the feasibility of using fault history to predict future water supply outages with significant accuracy. These forecasts allow water utilities to plan and optimize their maintenance, minimizing inconvenience and losses. The article contributes significantly to the field of water infrastructure management by proposing the applicability of a data-driven approach in diverse urban settings and across various types of infrastructure networks, including those pertaining to energy or communication. These conclusions underscore the paramount importance of systematic data collection and analysis in both averting failures and optimizing the allocation of resources within water utilities. Full article
Show Figures

Figure 1

16 pages, 1661 KiB  
Review
Acute Respiratory Failure in Autoimmune Rheumatic Diseases: A Review
by Sofia Poli, Francesca Sciorio, Giorgio Piacentini, Angelo Pietrobelli, Luca Pecoraro and Sara Pieropan
J. Clin. Med. 2024, 13(10), 3008; https://doi.org/10.3390/jcm13103008 (registering DOI) - 20 May 2024
Abstract
This review examines respiratory complications in autoimmune rheumatic diseases within intensive care units (ICUs). The respiratory system, primarily affected in diseases like rheumatoid arthritis, systemic lupus erythematosus, and scleroderma, often leads to respiratory failure. Common manifestations include alveolar hemorrhage, interstitial fibrosis, and acute [...] Read more.
This review examines respiratory complications in autoimmune rheumatic diseases within intensive care units (ICUs). The respiratory system, primarily affected in diseases like rheumatoid arthritis, systemic lupus erythematosus, and scleroderma, often leads to respiratory failure. Common manifestations include alveolar hemorrhage, interstitial fibrosis, and acute respiratory distress syndrome. Early recognition and treatment of non-malignant conditions are crucial to prevent rapid disease progression, with ICU mortality rates ranging from 30% to 60%. Delayed immunosuppressive or antimicrobial therapy may result in organ system failure. Collaboration with rheumatic specialists is vital for accurate diagnosis and immediate intervention. Mortality rates for rheumatic diseases in the ICU surpass those of other conditions, underscoring the need for specialized care and proactive management. The review emphasizes comprehensive assessments, distinguishing disease-related complications from underlying issues, and the importance of vigilant monitoring to enhance patient outcomes. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

16 pages, 310 KiB  
Article
Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term
by Xincai Zhu and Chunxia He
Axioms 2024, 13(5), 336; https://doi.org/10.3390/axioms13050336 (registering DOI) - 20 May 2024
Abstract
This paper is devoted to studying a type of elliptic equation that contains a varying nonlocal term. We provide a detailed analysis of the existence, non-existence, and blow-up behavior of L2-norm solutions for the related equation when the potential function [...] Read more.
This paper is devoted to studying a type of elliptic equation that contains a varying nonlocal term. We provide a detailed analysis of the existence, non-existence, and blow-up behavior of L2-norm solutions for the related equation when the potential function V(x) fulfills an appropriate choice. Full article
(This article belongs to the Special Issue Advances in Differential Equations and Its Applications)
21 pages, 19031 KiB  
Article
Interlayer Shear Sliding Behaviors during the Fracture Process of Thick Sandstone Roof and Its Mechanism Leading to Coal Mine Tremors
by Xuepeng Gao, Yishan Pan, Tongbin Zhao, Wei Wang, Yonghui Xiao, Yimin Song and Lianpeng Dai
Appl. Sci. 2024, 14(10), 4323; https://doi.org/10.3390/app14104323 (registering DOI) - 20 May 2024
Abstract
To explore the causes of mine tremors in coal mines with sandstone roofs, a three-point bending loading experiment was designed for composite sandstone layers, and the fracture and interlayer shear slip characteristics of the composite sandstone layers were studied using optical measurement and [...] Read more.
To explore the causes of mine tremors in coal mines with sandstone roofs, a three-point bending loading experiment was designed for composite sandstone layers, and the fracture and interlayer shear slip characteristics of the composite sandstone layers were studied using optical measurement and acoustic emission techniques. The results show that the bending of the rock layers led to interlayer sliding deformation, while the fracturing greatly promoted interlayer sliding. The maximum interlayer slip accelerations during bending deformation and fracturing were 0.6 mm/s2 and 3.8 mm/s2, respectively. During the fracturing of the rock layers, the proportion of acoustic emission shear fracture events increased with the continuous occurrence of long-lasting and high-amplitude acoustic emission events. The mechanism of mine tremors in thick sandstone roofs is as follows: the increase in the area of the goaf causes rock bending deformation and fracturing, accompanied by interlayer shear slip, fracturing of the sandstone layer, and friction dislocation at the cementation surface of the adjacent sandstone layers, which jointly cause vibration of the roof. Full article
Show Figures

Figure 1

25 pages, 1210 KiB  
Review
Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin–Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions
by Nadia Khan, Magdalena Kurnik-Łucka, Gniewomir Latacz and Krzysztof Gil
Int. J. Mol. Sci. 2024, 25(10), 5566; https://doi.org/10.3390/ijms25105566 (registering DOI) - 20 May 2024
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin–angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) [...] Read more.
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin–angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin–angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin–angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin–angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin–angiotensin and dopaminergic systems. Full article
(This article belongs to the Special Issue Role of Dopamine in Health and Disease: Biological Aspect 2.0)
Show Figures

Figure 1

16 pages, 812 KiB  
Systematic Review
Polymer Matrix and Manufacturing Methods in Solid Dispersion System for Enhancing Andrographolide Solubility and Absorption: A Systematic Review
by Pratchaya Tipduangta, Sunee Chansakaow, Pimpimon Tansakul, Rungarun Meungjai and Piyameth Dilokthornsakul
Pharmaceutics 2024, 16(5), 688; https://doi.org/10.3390/pharmaceutics16050688 (registering DOI) - 20 May 2024
Abstract
Background: Andrographolide (ADG) has poor aqueous solubility and low bioavailability. This study systematically reviews the use of solid dispersion (SD) techniques to enhance the solubility and absorption of ADG, with a focus on the methods and polymers utilized. Methodology: We searched electronic databases [...] Read more.
Background: Andrographolide (ADG) has poor aqueous solubility and low bioavailability. This study systematically reviews the use of solid dispersion (SD) techniques to enhance the solubility and absorption of ADG, with a focus on the methods and polymers utilized. Methodology: We searched electronic databases including PubMed, Web of Science, Scopus®, Embase and ScienceDirect Elsevier® up to November 2023 for studies on the solubility or absorption of ADG in SD formulations. Two reviewers independently reviewed the retrieved articles and extracted data using a standardized form and synthesized the data qualitatively. Results: SD significantly improved ADG solubility with up to a 4.7-fold increase and resulted in a decrease in 50% release time (T1/2) to less than 5 min. SD could also improve ADG absorption, as evidenced by higher Cmax and AUC and reduced Tmax. Notably, Soluplus-based SDs showed marked solubility and absorption enhancements. Among the five SD techniques (rotary evaporation, spray drying, hot-melt extrusion, freeze drying and vacuum drying) examined, spray drying emerged as the most effective, enabling a one-step process without the need for post-milling. Conclusions: SD techniques, particularly using Soluplus and spray drying, effectively enhance the solubility and absorption of ADG. This insight is vital for the future development of ADG-SD matrices. Full article
(This article belongs to the Special Issue Recent Progress in Solid Dispersion Technology, 3rd Edition)
Show Figures

Figure 1

17 pages, 6292 KiB  
Article
Methane Production from Sugarcane Vinasse Biodigestion: An Efficient Bioenergy and Environmental Solution for the State of São Paulo, Brazil
by Letícia Rodrigues de Melo, Bruna Zerlotti Demasi, Matheus Neves de Araujo, Renan Coghi Rogeri, Luana Cardoso Grangeiro and Lucas Tadeu Fuess
Methane 2024, 3(2), 314-330; https://doi.org/10.3390/methane3020017 (registering DOI) - 20 May 2024
Abstract
This study mapped the bioenergy production from sugarcane vinasse according to the mesoregions of the State of São Paulo (SP), Brazil, assessing the magnitude of biogas-derived electricity and biomethane production and estimating the greenhouse gas (GHG) emissions. SP holds 45% of the Brazilian [...] Read more.
This study mapped the bioenergy production from sugarcane vinasse according to the mesoregions of the State of São Paulo (SP), Brazil, assessing the magnitude of biogas-derived electricity and biomethane production and estimating the greenhouse gas (GHG) emissions. SP holds 45% of the Brazilian ethanol-producing plants, in which 1.4 million m3 of carbon-rich vinasse are generated daily. The electricity generated from vinasse has the potential to fully supply the residential consumption (ca. 6.5 million inhabitants) in the main sugarcane-producing mesoregions of the state (Ribeirão Preto, São José do Rio Preto, Bauru, Araçatuba and Presidente Prudente). In another approach, biomethane could displace almost 3.5 billion liters of diesel, which represents a 26% abatement in the annual state diesel consumption. Energetically exploiting biogas is mandatory to prevent GHG-related drawbacks, as the eventual emission of methane produced under controlled conditions (261.2 × 106 kg-CO2eq d−1) is ca. 7-fold higher than the total emissions estimated for the entire ethanol production chain. Meanwhile, replacing diesel with biomethane can avoid the emission of 45.4 × 106 kg-CO2eq d−1. Implementing an efficient model of energy recovery from vinasse in SP has great potential to serve as a basis for expanding the utilization of this wastewater in Brazil. Full article
(This article belongs to the Special Issue Trends in Methane-Based Biotechnology)
Show Figures

Figure 1

16 pages, 7610 KiB  
Article
Enhancing the Visible Light Photocatalytic Activity of TiO2-Based Coatings by the Addition of Exfoliated g-C3N4
by Ilias Papailias, Nadia Todorova, Tatiana Giannakopoulou, Niki Plakantonaki, Michail Vagenas, Panagiotis Dallas, George C. Anyfantis, Ioannis Arabatzis and Christos Trapalis
Catalysts 2024, 14(5), 333; https://doi.org/10.3390/catal14050333 (registering DOI) - 20 May 2024
Abstract
In the last few years, increasing interest from researchers and companies has been shown in the development of photocatalytic coatings for air purification and self-cleaning applications. In order to maintain the photocatalyst’s concentration as low as possible, highly active materials and/or combinations of [...] Read more.
In the last few years, increasing interest from researchers and companies has been shown in the development of photocatalytic coatings for air purification and self-cleaning applications. In order to maintain the photocatalyst’s concentration as low as possible, highly active materials and/or combinations of them are required. In this work, novel photocatalytic formulations containing g-C3N4/TiO2 composites were prepared and deposited in the form of coatings on a-block substrates. The obtained photocatalytic surfaces were tested for NOx and acetaldehyde removal from model air. It was found that the addition of only 0.5 wt% g-C3N4 towards TiO2 content results in over 50% increase in the photocatalytic activity under visible light irradiation in comparison to pure TiO2 coating, while the activity under UV light was not affected. The result was related to the creation of a g-C3N4/TiO2 heterojunction that improves the light absorption and the separation of photogenerated electron-hole pairs, as well as to the inhibition of TiO2 particles’ agglomeration due to the presence of g-C3N4 sheets. Full article
(This article belongs to the Special Issue Recent Advances in g-C3N4-Based Photocatalysts)
Show Figures

Figure 1

6 pages, 201 KiB  
Editorial
Air Pollution, Health Effects Indicators, the Exposome, and One Health
by Daniele Contini and Francesca Costabile
Atmosphere 2024, 15(5), 618; https://doi.org/10.3390/atmos15050618 (registering DOI) - 20 May 2024
Abstract
Ambient air pollution is the seventh highest risk factor for human health, being responsible for millions of premature deaths per year globally [...] Full article
16 pages, 3328 KiB  
Article
Optimizing Bioethanol (C2H5OH) Yield of Sweet Sorghum Varieties in a Semi-Arid Environment: The Impact of Deheading and Deficit Irrigation
by Mohammed A. Alsanad and Eman I. R. Emara
Water 2024, 16(10), 1456; https://doi.org/10.3390/w16101456 (registering DOI) - 20 May 2024
Abstract
Bioethanol production offers promise in mitigating environmental impacts from ethanol consumption despite water scarcity. This study endeavors to evaluate the nuanced influence of different deheading times (45 days before harvest, 21 days before harvest, and no deheading) along with varying water regimes on [...] Read more.
Bioethanol production offers promise in mitigating environmental impacts from ethanol consumption despite water scarcity. This study endeavors to evaluate the nuanced influence of different deheading times (45 days before harvest, 21 days before harvest, and no deheading) along with varying water regimes on select sweet sorghum cultivars (Honey, Willy, MN1500, and Atlas), focusing on yield traits, theoretical ethanol production, and water productivity. Findings underscore the substantial impact of cultivation practices on bioethanol yield. A water deficit ranging from 30% to 70% resulted in a discernible reduction in stalk yields of 17.86% to 18.54% and in sugar yields of 0.2 to 0.31 Mg ha−1, accompanied by a corresponding decline in theoretical ethanol yield of 120.9 to 180.9 L ha−1. Additionally, notable enhancements in Brix and sugar content of 16.32% to 18.42% and 16.81% to 19.03%, respectively, were observed across both seasons. Of particular significance, the Honey variety, subjected to a 30% water deficit and deheading at 21 days before harvest, demonstrated exceptional growth and yield characteristics. These empirical insights furnish valuable guidance for optimizing sweet sorghum cultivation practices, thereby augmenting sustainable bioethanol production and propelling forward the frontier of renewable energy technologies towards a more environmentally sustainable future. Full article
(This article belongs to the Special Issue Improved Irrigation Management Practices in Crop Production)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop